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HeartFlow Process for Obtaining FFRt

Computational Model
based on coronary CTA

3-D quantitative, anatomic
model from coronary CTA
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Physiologic models:

-Myocardial demand

-Morphometry-based
boundary conditions

- Effect of adenosine on

microcirculation
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Blood Flow
Solution

Blood flow equations
solved on supercomputer

p;., +p;-V; =-Vp+Ver
Vey=0

Calculate FFR-+

3D FFR- map computed

FFR.; = 0.72

(can select any point on model)




Q&A

Q: How do we compute FFR?

A: By solving the governing equations of blood flow for pressure and
velocity fields on a patient-specific geometric model subject to
appropriate physiologic boundary conditions.

Q: What are the governing equations of blood flow?

A: The governing equations of blood flow are the equations of mass
conservation and momentum balance. These equations are solved
for the unknown pressure which is a function of 3 spatial coordinates
and time, i.e. p=p(X,y,z,t) and for the three components of blood
velocity v,, v,, v, which are each functions of position and time, I.e.

V, =V, (X,y,Z,1)
vy =V, (X,Y,2,1)

vV, =V, (X,y,Z,1)
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Speed (cm/s)
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Governing Equations of Blood Flow

Mass Conservation (1 equation):

vy Vy ov, 0 This law states that
OX " oy " o7 blood is an
incompressible fluid

Momentum Balance (3 equations):

X z X
d Xy o These equations come
ovy ovy ovy ovy ap o2y, 82vy o2, from the application
P TP x5 Yy oy Ve =—5+ > T T of Newton’s 2" law,
ox oy oz =ma to a fluid

ot X

where p is the fluid density, and 4 is the fluid viscosity (both assumed known).
We solve these for vy (X, Y, ,t),vy (X, ¥, Z,1),v, (X, ¥, Z,1), p(X, ¥, Z,1)
for every point in the 3D model and over whatever time interval we are interested in.
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Q&A

Q: Do the properties of blood matter?

A: Yes, we need to specify the viscosity and density of blood. Blood
density is virtually constant, viscosity can be calculated from
Hematocrit.

Q: Why do we need a computer to solve these equations?
A: The governing equations of blood flow are highly nonlinear and the
geometry of the patient-specific model is very complicated.




Q&A

Q: How do we solve the equations of blood flow?

A: We use a numerical method to approximate the governing
equations and obtain an approximate solution at a finite (but very
large) number of points. These methods for solving fluid flow
problems are called computational fluid dynamics (CFD) methods.

Q: What type of computational fluid dynamics methods are typically
used to solve blood flow equations?

A: The CFD method most commonly used is called the finite element
method.

Q: How does the finite element method work?

Al: We approximate the geometry using a finite element mesh
consisting of millions of nodes and millions of elements.

A2. We then solve the governing equations at the nodes which are
distributed throughout the model. This requires solving millions of
nonlinear equations simultaneously and repeating this process fo

\thousands of time intervals in a cardiac cycle.




The finite element mesh
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Q&A

Q: What are “appropriate physiologic boundary conditions”?

A: Since we are only solving the equations of blood flow in a portion
of the patient’s circulatory system, we have to say something about
our variables of interest (pressure and velocity) at the interface
between the modeled domain and the remainder of the circulation.

There are four types of boundaries we have to consider and each has
a distinct boundary condition. These are:

1. Aortic inlet — we model the interactions between
the LV and systemic circulation

2. Aortic outlet — we enforce a relationship between
flow and pressure of form representing aortic
impedance.

3. Coronary outlets — we will prescribe a unique
model of the microcirculation at each and every
coronary outlet boundary.

4. Lateral surface — we can neglect the motion of
the arteries and prescribe a zero velocity (“no-

\slip condition” for viscous fluids).
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ldealized stenosis — model, boundary

conditions
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Pressure and velocity in 80% area reduction
stenosis under hyperemic conditions

Pressure Velocity
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Patient—Specific model of aorta and coronary
arteries

B: Windkessel model

A: Lumped-parameter heart model
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Calculated blood flow & pressure waveforms
during hyperemia

Aorta an d LAD pressure
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3D Pulsatile Velocity and Pressure Fields

Pressure Velocity

Rest

Hyperemia
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From Hyperemic Pressure to FFRqy

« Mean coronary pressure is divided by aortic pressure in
hyperemic state to compute FFR

Pressure (mmHg)

40 80 100
50 110
Simulated mean pressure with FFR = Coronary / aortic

\ hyperemia pressure with hypere



Summary

- CFD methods enable the solution of a broad | #4
range of fluid dynamics problems governed '

by laws of physics
e CFD methods vield approximate solutions to
mathematical models

o Cardiovascular fluid dynamics problems
present unique challenges especially in
creating patient—specific models and
assigning realistic boundary conditions

e There are innumerable applications of CFD
technology in the cardiovascular system
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